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Abstract

Several state-of-the-art image representations comsataraging local statistics
computed from patch-level descriptors. It has been showBdwreauet al. that
such average statistics suffer from two sources of variaibe first one comes
from the fact that a finite set of local statistics are avedagéhe second one is
due to the variation in the proportion of object-dependefirmation between
different images of the same class. For the problem of olojassification, these
sources of variance affect negatively the accuracy sinegiticrease the overlap
between class-conditional probabilities.

Our goal is to include information about the spatial layduthmages in image
signatures based on average statistics. We show that theadnal approach to

including the spatial layout — the Spatial Pyramid (SP) +@ases the first source

*Corresponding author
Email addresses: sanchez@ anmaf . unc. edu. ar (Jorge &nchez),
florent. perronni n@rce. xer ox. com(Florent Perronnin),
t . decanpos@t - annes. oxon. or g (Tebfilo de Campos)
IMost of this work was done while JA8chez was at Clll, Universidad Tecbgica Nacional,
Factultad Regional &doba, X5000HUA, Grdoba, Argentine.

Preprint submitted to Pattern Recognition Letters July 2651 2



10

11

12

13

14

15

of variance while only weakly reducing the second one. Weefiloee propose two
complementary approaches to account for the spatial laybich are compatible
with our goal of variance reduction. The first one models hegtial layout in an
image-independent manner (as is the case of the SP) whisetosd one adapts
to the image content. A significant benefit of these apprcaahid respect to the
SP is that they do not incur an increase of the image signdimmensionality. We
show on PASCAL VOC 2007, 2008 and 2009 the benefits of our approa
Keywords: image representation, spatial layout, image categooizakisher

vectors, PASCAL VOC datasets, spatial pyramids

1. Introduction

One of the most successful approaches to describe the tohterages is the
bag-of-features (BOF). It consists in computing and agdnegatatistics derived
from local patch descriptors such as the SIET [1]. The mogufas variant of the
BOF framework is certainly the bag-of-visual-words (BOV) aliicharacterizes
an image as a histogram of quantized local descripﬁy [2n3 nutshell, a code-
book of prototypical descriptors is learned with k-meand @ach local descriptor
is assigned to its closest centroid. These counts are tleeaged over the image.

The BOV has been extended in several ways. For instance, tlegbanti-
zation can be replaced by a soft quantization to model thgrasgnt uncertainty

,15] or by other coding strategies such as sparse coui & Also the aver-
age pooling can be replaced by a max poolmlg[gl H 8, 9]. Aerotltension is to
include higher order statistics. Indeed, while the BOV isyadncerned with the
number of descriptors assigned to each codeword, the Riglotor (FV) ]

as well as the related Vector of Locally Aggregated Deseorgp(VLAD) ]
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and Super-Vector Coding (SVCJHlS] also model the distributad descriptors
assigned to each codeword.

Obviously discarding all information about the locationpaftches incurs a
loss of information. The dominant approach to include gppatformation in the
BOF framework is the Spatial Pyramid (SP). Inspired by thapyd match kernel
of Grauman and Darrelﬁh], Lazebnék al. proposed to partition an image into
a set of regions in a coarse-to-fine manner [15]. Each regidascribed indepen-
dently and the region-level histograms are then concagdriato an image-level
histogram. The SP enables to account for the fact that diffeegions can contain
different visual information.

Several extensions of the SP have been proposed. Marstalkbkuggested a
different partitioning strateg)m6]. Their system comdaiirthe full image with a
1x3 (top, middle and bottom) and a 2x2 (four quadrants) fi@ming. Viitaniemi
and Laaksonen proposed to assign patches to multiple egioa soft manner
]. The SP has also been extended beyond the BOV, for irestartbe FV]
or the SVC ]. We note that all previous methods rely on adained parti-
tioning of the image which is independent of its contentlikkjs et al. proposed
a bi-partite image-dependent partioning in terms of oliject-object|[18]. Two
BOV histograms are computed per image: an object BOV and axioBV.
While the authors report a very significant increase of thesifization accuracy
on PASCAL VOC 2007, their method relies on the knowledge obthject bound-
ing boxes which is unrealistic for most scenarios of pratti@lue. We outline
that the simple SP of Lazebn#t al. is still by far the most prevalent approach
to account for spatial information in BOF-based methods. Rige&rapacet al.

] proposed to include a location prior per visual word émdlerive a Fisher
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kernel from this model. They report similar results as with &1t using a more
compact representation. IljSO], the authors propose todecspatial and an-
gular information directly at descriptor level. They usedt€80OV and sparse
coding-based signatures, reporting promising resultpeoved to SR,

Our goal is to propose alternatives to the SP for object iflesson. We focus
on the FV which is simple to implement, computationally eéi¢ and which was
shown to yield excellent results in a recent evaluat@.[i}l@wever, our work
could be extended to other BOF-based techniques in a sti@ighard manner.

ﬁ Q 9]. If we have a-tlass

classification problem, linear classification requires distributions of FVs for

We build on the insights of Boureau et a

these two classes to be well-separated. However, thereraisources of variance
which make the distributions of FVs overlap. The first oneus tb the fact that
the FV is computed from a finite set of descriptors. The sea@m&comes from
the fact that the proportion of object-dependent infororatmay vary between
two images of the same class. Reducing these sources ofes@ranuld increase
the linear separability and therefore the classificatiasueacy. In this paper, we
propose two different and complementary ways to includesgiaial information

into the image signature which target these two sourcesranee.

The remainder of the article is organized as follows. In tBgtsection, we

briefly review the FV coding method. In sectibh 3 we considher tariance due
to the finite sampling of descriptors. We extend the anaky[s[g, B] to the case

of correlated samples. We show that, because the SP redecsize of the re-

2Some of our contributions are related to thoseB , 30]iclvihave been developed in
parallel to the work in this paper. As it will be clear in $éc & oesults in the VOC2007 dataset

outperform theirs by a large margin.
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gion over which statistics are averaged, it impacts neggtithe variance of the
distribution of FVs. We therefore propose a novel approacim¢lude the spa-
tial information by augmenting the descriptors with theication. In sectionl4
we analyze the second source of variance specifically indse of the FV. We
show that we could partially compensate for this source ofawae if we had
access to the object bounding boxes. However, as oppos]t(w[e propose
a practical solution to this problem based on the objectnesssure of Alexet

al. ]. In sectiorl_5, we provide experimental results on PARGAC 2007,

2008 and 2009 showing the validity and the complementafitizetwo proposed
techniques. A major benefit is that, as opposed to the SPdihept increase the

feature dimensionality thus making the classifier learmaye efficient.

2. The Fisher Vector

We only provide a brief introduction to the FV coding methddore details
can be found in 1]. LeX = {x;,t = 1...T} be the set of local descrip-
tors extracted from animage. Let : R” — R be a probability density function
with parametera which models the generation process of the local descsbor

any image. The Fisher vect@y’ is defined as:
Gy = L\Gx. (1)

L, is the Cholesky decomposition of the inverse of the Fish@riméation matrix
F\ of uy, i.e. F;l = L\L,. Gf denotes the gradient of the log-likelihood w.r.t.

A e

T
1
Gy = T Z Vi logux(z). (2)
t=1
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In our caseu, = Zf\il w;u; 1S @ GMM with diagonal covariance matrices and
parameters\ = {w;, yu;,0;,0 = 1... N} wherew;, p; ando; are respectively
the mixture weight, mean vector and standard deviationovexft Gaussianu;.
Let v;(i) be the soft assignment of descriptqrto Gaussian:;. Following

l] we discard the partial derivatives with respect to thetune weights as they

carry little discriminative information. We obtain the lmving formulas for the
gradients with respect t@;, ando;

G = T@Z% (2" ©

6y - N—ZZ% o). @

The image signature is defined as the concatenation of thergd®) and[(4) for

all Gaussians:
T
gif:[glﬁ’...7g5N7g£7...’g§N} ) (5)

As shown in ], square-rooting and L2-normalizing the v greatly enhance
the classification accuracy. Also, following the SP framew@ne can split an
image into several regions, compute one FV per region andatenate the per-
region FVs.

Let D be the dimensionality of the local descriptors, be the number of
Gaussians an® be the number of image regions. The resulting vectar is-

2D N R dimensional.

3Vector divisions should be understood as term-by-termatjmens.
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3. Average Pooling and Feature Augmentation

The FV, as given by e]1) and (2), can be viewed as an avergumaif-level

statistics. Indeed, we can rewrite:

v 1y
9y =7 ; 2 (6)
with:
2z = g(xy) = LyVyloguy(xy). (7)

If we assume the samples to have been generated by a class-conditional dis-
tribution p. (where the variable indexes the class) and to be iid, théh (6) can be
seen as the sample estimate of a class-conditional exjpectat

lim G = E,, [g(2)]. (8)

T—o00

As noted in [[]3], there is an intrinsic variance in this estiima process which is
caused by sampling from a finite pool of descriptors. Bouetaal make a patch
independence assumption and thus, in their analysis, thanea of this estimator
decreases like:.

In the rest of the section we extend this variance analysielaxing the in-
dependence assumption. Although our focus is on FVs, thigsasave present
applies to the broader class of image descriptors whiclagesstatistics computed
from local descriptors. We also outline the shortcomingghefSP framework in
the light of the previous analysis. Our conclusion is thatifianing the image
into a set of regions increases the variance of the estim@ferfinally present a
new image representation which encodes the spatial laybil alleviating the

partitioning.



102 3.1. Variance analysis of average pooling

In what follows we assume that image patches are extraaedtfie nodes of
aregular griH and described by-dimensional vectorg.g SIFT H] descriptors.
To facilitate the analysis, let us consider a simplified Modeere all variables;
have equal varianceé®. Var(z,) = o2. The variance of the sample mean estimator

is, in this case:

T

T T
1 o’  o?
Var (f;zt> =3+ ﬁzzlp(zt,zs) 9)

t=1 s=
s

with p(z, z) the correlation coefficient between variablgsndz,. If we define

the average of these cross-term correlations-asyz—; 21—y 2oy o 2(71: %),

eqg. [9) can be rewritten as

T
1 o? ,I'—1
J— = — 7, 1
Var (T ;1 zt> T +o TP (20)

103 Note that the valug is a function of several factors including the sampling step

w4 the size of the pooling window. We now analyze the impact eséitwo factoli
s Figure[l shows estimates of the average cross-term coorefags a function of
106 the grid sampling step for two pooling window siz&&8 x 128 and96 x 96 pixels
07 respectively (see selc. 5.2 for details about the featuraetidan procedure). As
08 expectedp increases when the sampling step or the window size decrease
109 We now study the implications on the SP framework. Based omptéeous

no analysis, we can see that partitioning the image incurs @ease in the variance

40ther sampling strategies can be analyzed as wgjl,random sampling or sampling based

on interest point/region detection. The conclusions théd\ remain the same.
SWe note thatp might depend on many other factors including the semantitert of the

image.
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Figure 1: Average correlatighas a function of the sampling step for pooling windows of 1128k

and 96x96 pixels. This analysis was performed ortithi@ set of the PASCAL VOC 2007 dataset.

of the estimator when compared to the case where the patehdetistics are
pooled over the whole image. Indeddr, a fixed sampling stepvhen the size of
the pooling region decreases, we have the two followingcesfa) the number of
patchesl” decreases and ii) the average correlagiomcreases.

We would like to point out that using as many patches as pleségbg. by
sampling patches at each pixel location) might not be optiorathe average
pooling strategy contrary to what is claimedm1 [9]. Indeed one hand decreas-
ing the step size will increase the sample cardinality, asrel@é. On the other
hand, increasing’ will also increase the patch overlap and thereby the average

correlation. From[(10) in the limit:

T
: 1 9
jlgrolo Var <T E zt> =0°p. (11)
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Therefore, the benefits brought by a greater sample caitgingight be compen-

sated by an increase pf

3.2. Feature augmentation

We now propose to model the layout of an image without partitig it. We
consider the joint distribution of low-level descript@sd patch locations. As we
will see, our approach results in a very simple solution toahpetes favorably in
performance with SPs.

Let m, = [myy, my,t]T denote the 2D-coordinates of an image patch associ-
ated to a low-level descriptar; ando, the patch scale. Lei andV represent the
image height and width respectively. We define the followangmented feature

vectorz, € RP+3:

T
R mm/W —0.5
myi/H —0.5

log o, — log VW H
By using [12) instead of the raw descriptors, the underlyiistridution u, now
reflects not only the generation process of local descsgtat also the location
and scale at which they are likely to be generated.

This augmented representation offers several benefitsregipect to the SP.
First, it does not rely on a partitioning of the image and ¢fi@re does not lead to
an increase of the variance. Second, it leads to only a veajl amrease in the
dimensionality of the FM2N (D +3) dimensions compared 8D N R dimensions

for a SP withR region. This makes the learning of classifiers significantly more

Actually in our experiments with augmented features we kbegeature dimensionality con-

10
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efficient and helps scaling to larger datasets. Third, isdu# require to choose,
a priori, a given spatial layout. Indeed, the optimal layoiud SP may depend on
the dataset.

Note that, as we consider diagonal covariances for the géwemodel of
eqg. [2), the components of the mixture (single Gaussianspealecomposed as
u; = ul 9 Here,u!"" andu!"*” denote the appearance and location/scale
part of the augmented representation, respectively. Shaguivalent to explicitly
including a (Gaussian) location prior per visual word, asposed by Krapaet
al. (c.f. eq. (18) of ]). In our case, the model remains the samenandnly
change the low level feature representation, making itiptest extend the model

to other encoding methods.

4. Within-Class Variance and Objectness

In the previous section, we showed that the FV can be unaetste the sam-
ple estimate of a class-conditional expectation and theaetls an intrinsic vari-
ance in this estimation process which is caused by samplorg & finite pool
of descriptors. We now show that there is a second sourceriaingg which is
inherent to the model and we propose another approach tartekaccount the

spatial layout to remediate this issue.

4.1. Within-class variance

We follow the same line of thought as Boureztal. E] and Perronniret al.
] and assume that the local descriptors in a given imagdaskc are gen-

erated by a mixture of two distributions: a class-dependesitibutiong. and a

stant by selecting a subset(@ — 3) original features (c.f. seE.5.1).

11



background class-independent distribution. Furtherpramés the case iEhl], we
make the assumption that the class-independent distiibaéin be approximated
by u,. Therefore, the generative model of patches in an imageaskclcan be

written as:
Pe(x) = wqe(x) + (1 — w)up(z) (13)

with 0 < w < 1 reflecting the proportion of class-specific information. sk®wn
in [H], if the parameters characterizing the backgroustrithutionw, were esti-
mated to maximize (at least locally) the likelihood funatithen we have approx-
imately:

lim Gy = wV\E,y [log ux ()] (14)

T—o0

and consequently we can rewrité (8) as follows:

lim Gy = wEqrq.[9(2)]. (15)

T—00

Following B], we further assume thatis drawn form a distributiong.g a
beta distribution) and that, while it may vary from one iméageanother, it is
sampled only once per image. We underline that the distobdtom whichw
is sampled might be class-dependent (c.f. Figlire 2). In auzdse, the quantity
wE, . [g(x)] is a random variable. Therefore, even if we had access tdfiaitén
number of iid patche¥ in each image (perfect estimation of the class-conditional

expectation) there would be some variabeéween imageas we have:
Var (lim G) = Var(w) (Bawg.[g(x)])? (16)

1 Where the variance has been taken with respect tbherefore, we can decrease
10 the variance, and therefore increase the class sepayaylitancelling the effect

151 Of w. We propose an approximate method to do so in the next sutnsect

12
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Figure 2: We show the histogram of thevalues for two VOC 2007 classes: horse (left) and
potted-plant (right). Since we do not have access to omegatt), we use as a proxy the ratio

between the object bounding-box area and the image area.

4.2. Leveraging the objectness measure

Let us use as a proxy fas the proportion of the image which is covered by
a given object. We note that if we worked only with images afpged objects
then we would have) ~ 1 and the variance effect described in the previous sec-
tion would be canceled out. Uijlingst al. indeed showed that the recognition
accuracy of a BOV-based image classifier could be greatlgassd by assuming
the knowledge of the object locations in images [18]. Howgewetheir scenario,
the object bounding boxes were provided manually which reairstic for most
applications of practical vaIHe The above has also been observed by De Cam-

poset al. [20], who explored the use of human feedback to provide pgprcx-

"We note that the SP could somewhat compensate for this sofivegiance for a given class
if the location of the considered object was fixed and matehgnlen region of the SP. However,

such stringent conditions would rarely hold in practice.

13



12 Imate location of objects in images (given in terms of “sdifunding boxes).
13 The authors showed significant improvements compared & atternativese.g
s Methods based on the “saliency” of local image patches.

Recently, Alexeet al. [19] proposed a method to measure how likely an image
window is to contain an object of any class. The method rarethe combina-
tion of different cues designed to reflect generic propgmieobjectsj.e. global
saliency, local contrast and boundary closeness. Thisuneassed as a prior over
object locations was successfully employed to speed-LEp:bbjetectorJEQ]. We

propose to use this objectness measure to approximatatyagstthe location of
objects in images. More precisely, we combine the objestnesasure of [19]
with the locally-weighted patcheapproach of De Campaost al. ]. In the
weighted-patches representation, we have a weiglatssociated with each de-
scriptorx; and we have the following weighted representation of thegena
Gy = M (17)
Zt:l ¢t

In our case, the weights, are computed as follows. For a given image, we draw
a set of windows from the objectness distribution with theagling procedure
described inHQ]. Lef2;,j = 1,..., M represent the spatial support of tjith
window (defined bye.g its top-left and bottom-right corners). The weightfor

the descriptor:, located at positiom:,; is computed as follows:

M
Ge =) 0;(m) (18)
j=1
whered;(m;) has been defined as:
1 if my € Ql,

0 otherwise.

14
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Figure 3: Sample images from the PASCAL VOC 2007 datasetladdrresponding objectness

maps obtained by sampling 1000 random windows.

Figure[3 shows the objectness maps obtained by this proeéalusome example
images of the PACAL VOC 2007 datasg[ﬂ]. Note that, obvigusien if the
objectness measure of [19] provided a perfect predictich@presence/absence
of an object, the proposed approach would only partiallyceathe effect ot for
several reasons. First, some object patches might haveeceied by the back-
ground distributione.g the uniform patches of an untextured object. Second,
some background patches might have been emitted by thesgasgic distribu-
tion, e.g when the background strongly correlates with the presehite object.
Third, realistic images contain multiple objects and thgeolmess measure does
not distinguish between different objects. Therefore,tipla objects might con-
tribute to the weighted image signature.

We note that Perronniet al. [11] proposed the L2 normalization of the FV to
cancel the effect ab. In our experiments, we always found that the combination
of the L2 normalization and the objectness measure improlsgification which
seems to indicate that there is a complementarity betwes=e thwo approaches.

We also note that Uijlingst al. partitioned the image into object/background

15
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and consequently computed two representations per image:fav the object

and one for the background. The two representations wergegukntly com-

bined. We also tried to compute two FVs: one using the obgsstmeasure and
one using the complement to focus on context information.o&erved exper-
imentally that adding the context information had littlepact in our case. This
might be because the FV weighted by the objectness measaesiglcontains a
fair amount of background information (c.f. Figlre 3). Téfere, we discarded
the context FV. Consequently, using the objectness measeserbt increase the
dimensionality of the FV representation.

We note that using the objectness measure to compute patghtsvean be
regarded as a saliency estimation process. However,itnaalitapproaches for
saliency detection (i.e. bottom-up methods) rely on sgpemall regions ac-
cording to their rarity w.r.t. to their local surrounding&s such, salient regions
detectors show difficulties in dealing with cluttered ortterd backgrounds (as
observed, e.g. irBB]). Although the method of Aleateal. includes a multi-
scale saliency detector as a basic cue, it also considess ibasures related to
the presence of whole objects besides of simple local cteaistics.

It has been observed that highlighting whole objects mayaivaays be best
strategy. For instance, if the goal is to distinguish betweats and dogs, it is
better to highlight their heads than give equal importamcéheir whole body

32]. Inthat context, it is possible that novel top-dosatiency estimators may
lead to better performance with the proposed representaBach an evaluation
is a suggestion for future work.

Finally we point out that, in the case of the BOV representatihe max-

pooling strategy was shown to be more resilient to the vadaof w than the

16
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average pooling strategy. However, extending the maxHpgstrategy to the FV
— i.e. beyond count statistics — is non-obvious in our opinion awodld be an

interesting topic of future research.

5. Experiments

We first present the experimental setup. We then provide mietals about

the computation of the average correlation in[dec 3. We fimafport our results.

5.1. Experimental setup

Datasets.We ran experiments on three challenging datasets: PASCAL VOC
2007 E{], 2008 BZ] and ZOOSE[ES]. These datasets contaages of 20 ob-
ject categoriesaeroplane, bicycle, bird, boat, bottle, bus, car, cat, chaow,
diningtable, dog, horse, motorbike, person, pottedplahgep, sofa, traiandtv-
monitor. The set of images for each class exhibits a large degredrafdtass
variation, including changes in viewpoint, illuminatiastale, partial occlusions,
etc.. Images from these datasets are split into three groxagas for training, val
for validation andtestfor testing. We followed the recommended procedure of
selecting parameters by training on tinain while using theval set for testing.
The system was re-trained using tina@in+val sets once the best choice for the
parameters have been selected. Classification performsnoeasured using the
mean Average Precision (mAP).

Low-level features. In all our experiments we useohly 128-dimensional
SIFT descriptors, computed over image patche®aok 32 pixels uniformly dis-
tributed over the image.e. extracted from the nodes of a regular grid with a step
size of 8 pixels (we used the “flat” implementation Q[M])e\bﬁd not perform

any normalization on the image patches before computing 8&5criptors. The

17



220 dimensionality of these descriptors were further reduoegDtby Principal Com-

2 ponents Analysis (PCA). To account for variations in scalke gwxtracted patches
22 at 7 levels with a scale factor af2 between them. Images were first upsampled
233 at twice their original resolution as il;| [1].

234 Feature augmentation.For the experiments based on the feature augmenta-
235 tion approach (se€_3.2) we kept the same dimensionalitgvofével features by

26 replacing the 3 “least-significant” dimensions of the PCAueed SIFT with the

237 3 location and scale dimensions. This ensures a fair cosgawith the original

28 80-dimensional PCA features.

239 Objectness measureTo compute the objectness measure, we used the default
20 pre-trained system provided by the authorslg [19]. We sathftl000 windows

21 Perimage.

242 Generative model.We trained a GMM with the Maximum Likelihood (ML)
223 Criterion using the Expectation-Maximization (EM) algbm. We used 1M ran-
24 dom samples from the training set and the EM algorithm ilega by running

25 Standard k-means and using the statistics of points agbtgresach Voronoi parti-

26 tion (relative count, mean and variance vectors) as ireéimates for the mixing

27 coefficients, mean and variance vector respectively.

248 Classifiers.We learnt a linear Support Vector Machine (SVM) indepenligent
29 for each class (one-vs-all classification) using Stoch#&&tadient Descent (SGD)
20 1IN the primal. We used the code made available by Bou [25].

1 5.2, Estimation of the sample correlatign

252 We now give a detailed explanation of the estimation prooeduwtlined in
253 section[B. We generated a set of 100 fixed-size images by mapdsampling

s windows (0f128 x 128 and96 x 96 pixels respectively) from therain set of the
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Figure 4: Classification performance vs number of Gausdi@m and vs the image signature
dimensionality (bottom) on VOC 2007.

PASCAL VOC 2007 dataset. For each such window we extracted 8&scrip-
tors as described above but considering only one level angbrgampling was
performed. We computed a “single-feature” FV for each ext&d sample by us-
ing a model with 128 Gaussians. We did not perform any funtteemalization,
neitherL, nor square rooting. We repeated the experiment 5 times vditfiesient
subset on each run. In Figurke 1, we show the mean over all ndheraor bars at

1 standard deviation.

5.3. Results

VOC 2007. Figure[4 (top) shows the classification performance as a-func
tion of the number of Gaussians (from 128 to 2,048) on the PASEAC 2007
dataset. We consider two baseline systems: one which déo@schade any kind
of spatial information (FV) and one based on a FV with a 1x2+#2k3 partition-
ing (SP). Note that the signatures of the SP system are 8 targey than those

of the FV for the same number of Gaussians. Compared to the chdhe-art,
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20 OUr SP system achieves a performance comparable to the Wigsthed results
270 for systems using only SIFT descriptors (63.8% vs 64.0% aiut al. ]).

o We also evaluate the following systems: a FV system base@atmre aug-
.2 mentation (AUG), a FV system employing the objectness poioitop of non-
23 augmented PCA-reduced vectors (OBJ) and a FV system baseé oartibina-
22 tion of both of the above (A+0),e. by using the objectness measure to weight the
215 contribution of augmented low-level features. We alsowsi@ a system based on
276 @ late-fusion approach (LF): averaging the outputs of thesfiers from the A+O
a7 and SP systems.

278 Let us first compare our two baseline systems: FV and SP. ltbeaseen
79 that, besides the notorious benefit of including the spatiarmation into the
20 representation, these two systems behave differentlyeesizk of the vocabulary
21 INCreases. In the case of FV, it reaches a plateau at 1024t@assvhile SP does
252 reach a maximum at 512. We can explain this behavior by ndtiatthe variance
s Of the FV depends not only on the number of patches but alsoeomtmber Gaus-
2« SlaNs, since the larger the number of Gaussians the feweG@assian” statistics
25 are pooled together (higher sparsity). This also appliestier image-level repre-
25 Sentations and especially to the BOV as notedlin/[8, 9]. Tloeegby partitioning
257 the image we are not only reducing the number of samples toitng to the
288 representation but also limiting the capacity of the systerhenefit from richer
280 VOcCabularies

290 Let us now consider the performance of the proposed sys#&d and OBJ)
201 alone. In both cases, we observe a consistent improvementthhe FV-baseline
202 for all vocabulary sizes. Compared to SP, the OBJ system shelighdly worse

203 performance for models having up to 512 visual words. Itheadts maximum
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accuracy of 64.7% mAP at N=1,024 and outperforms our bestyStera while
using 4 times smaller signatures. We observe a similar behan the AUG
system. It shows a lower performance for small vocabuldmigshe gain brought
by using a more complex model becomes even more pronountedacdhes a
value of 64.8% mAP at 2,048 Gaussians and, contrary to the&PBJ systems,
it does no show a decrease in classification performanceavglr vocabularies.

If we now consider the combination of the twige. our A+O system, we ob-
serve some complementarity between these two approachés:tihe augmenta-
tion approach models the location information iniarage-independemhanner,
the objectness priaxdapts to the image conterithe combined system achieves
65.8% MAP. This is +2.0% better than our SP baseline.

Finally, let us consider the system obtained by averagiegotitputs of the
SP and A+O classifiers. Note the great complementarity thiatsebetween the
system for small vocabularies. The combined system achia\state-of-the-art
accuracy of 64.4% mAP with barely = 128 Gaussians. For larger values §f
the effect becomes less noticeable: +2.4% absolute paiBt8%b relative) at 128
Gaussians vs. +0.6% (+0.9%) at 1,024 Gaussians.

We also show in Figurlel 4 (bottom) the classification accueescy function of
the dimensionality of the image signatures. When compar#étet&P baseline or
to ] the advantages of our representation are clear: weachieve the same
accuracy with much smaller dimensional image represemstiAgain, this is an
important advantage when scaling to large datasets.

Table[l shows the classification accuracy obtained for teedfeeach system
in figure[4. We also compare with the supper vector coding (SMproach of

Zhouet al. [13].
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Table 1: Classification performance for each class of theGNSVOC 2007 dataset for the

systems shown in figufé 4.

Class [13] | F¥ SP AUG OBJ A+O LF

aeroplane | 79.4| 80.2 81.7 816 829 83.1 83
bicycle 725]169.1 695 710 698 71.0 72,
bird 556|528 559 580 574 610 59,
boat 738|729 73.0 746 724 734 74,
bottle 340|376 349 372 386 385 37,
bus 7241695 717 713 69.8 70.7 72,
car 834|818 817 821 822 832 82,
cat 63.6| 61.8 634 650 66.2 68.1 67,
chair 56.6| 549 57.0 582 539 572 57,
cow 528|472 504 50.7 521 544 55,
diningtable| 63.2| 61.5 63.8 64.9 624 645 66.
dog 4951 505 495 527 56.3 579 54,
horse 80.9| 79.1 80.3 80.8 79.8 80.7 81,
motorbike | 71.9| 67.1 68.8 68.1 69.3 70.7 71,
person 851|858 86.0 86.7 864 86.6 87,
pottedplant| 36.4 | 37.6 37.7 383 37.7 375 37,
sheep 46.5| 46.6 49.7 509 56.8 53.6 53,
sofa 59.8| 57.0 59.1 595 60.7 608 63,
train 83.31823 826 839 818 827 84,
tvmonitor | 58.9 | 59.0 58.7 60.0 595 59.7 60,
average 64.0| 62.7 63.8 648 645 658 66,
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VOC 2008 and VOC 2009.Next, we evaluate the performance of our system
on both PASCAL VOC 2008 and PASCAL VOC 2009. We compare the per-
formance of our A+O approach against the winning teams fetahallenges:
the “SurreyUVA SKRDA" system on VOC 2008 [26] and the “NECUIUCLS-
DTCT” system on VOC 2009 [27]. The first one is based on the coatlmn
of several types of detector/descriptor channels, the ti8Pe and costly non-
linear classifiers. The second one combines several ergaoedamniques with
class-specific object detectors. We believe these two rdsttwbe significantly
more computationally intensive than ours. We also showltesbtained with
our baseline SP system for further comparisons. In the dag@G 2009 results,
we also include those obtained by Zhetual. E] with SVC. Tabld R shows the
performance for each of the above systems. As a complenyembée, tabld 3
compares the average performance of the LF system with gtedmults of table
[2, showing that on these datasets the late fusion of SP andchasSifiers brings

little improvement (+0.4% absolute).

6. Conclusions

We addressed the problem of representing the spatial layfaaotages with
two different and complementary approaches. Both origthftam a theoretical
well founded analysis. We showed on three of the challen§iR§CAL VOC
benchmarks the benefits of our approach: a higher accuralegutincreasing the
image signature dimensionality. Although our focus was ¥s,Rhe generality

of the approach makes it applicable to other BOF-based repiasons.
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Table 2: Comparison with the state-of-the-art on the PASGAC 2008 and PASCAL VOC
2009 datasets.

VOC2008 VOC2009
Class [26] SP A+O| [27] [13] SP A+O

aeroplane | 79.5 835 85.0/ 88.0 87.1 86.4 87.1
bicycle 543 578 60.3] 686 674 631 659

bird 61.4 627 67.4| 679 658 625 68.1
boat 648 714 719|729 723 711 725
bottle 30.0 33.2 375|442 409 405 458
bus 52.1 56.4 579|795 783 757 764
car 595 64.6 679|725 69.7 66.2 69.3
cat 594 64.7 69.3/ 70.8 69.7 66.1 70.4
chair 48.9 49.2 475|595 585 56.3 56.0
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dog 46.0 52.2 57.6/59.0 56.3 56.5 625
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average 549 575 604|665 643 626 65.3
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Table 3: Average accuracy for the late-fusion based appreéb the best performing systems on

table2.

VOC2008 VOC2009
Class [26] A+O LF | [27] [13] A+O LF

average| 54.9 604 60.8 66.5 64.3 653 65.7
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