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Abstract

Several state-of-the-art image representations consist in averaging local statistics

computed from patch-level descriptors. It has been shown byBoureauet al. that

such average statistics suffer from two sources of variance. The first one comes

from the fact that a finite set of local statistics are averaged. The second one is

due to the variation in the proportion of object-dependent information between

different images of the same class. For the problem of objectclassification, these

sources of variance affect negatively the accuracy since they increase the overlap

between class-conditional probabilities.

Our goal is to include information about the spatial layout of images in image

signatures based on average statistics. We show that the traditional approach to

including the spatial layout – the Spatial Pyramid (SP) – increases the first source
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of variance while only weakly reducing the second one. We therefore propose two

complementary approaches to account for the spatial layoutwhich are compatible

with our goal of variance reduction. The first one models the spatial layout in an

image-independent manner (as is the case of the SP) while thesecond one adapts

to the image content. A significant benefit of these approaches with respect to the

SP is that they do not incur an increase of the image signaturedimensionality. We

show on PASCAL VOC 2007, 2008 and 2009 the benefits of our approach.

Keywords: image representation, spatial layout, image categorization, Fisher

vectors, PASCAL VOC datasets, spatial pyramids

1. Introduction1

One of the most successful approaches to describe the content of images is the2

bag-of-features (BOF). It consists in computing and aggregating statistics derived3

from local patch descriptors such as the SIFT [1]. The most popular variant of the4

BOF framework is certainly the bag-of-visual-words (BOV) which characterizes5

an image as a histogram of quantized local descriptors [2, 3]. In a nutshell, a code-6

book of prototypical descriptors is learned with k-means and each local descriptor7

is assigned to its closest centroid. These counts are then averaged over the image.8

The BOV has been extended in several ways. For instance, the hard quanti-9

zation can be replaced by a soft quantization to model the assignment uncertainty10

[4, 5] or by other coding strategies such as sparse coding [6,7, 8]. Also the aver-11

age pooling can be replaced by a max pooling [6, 7, 8, 9]. Another extension is to12

include higher order statistics. Indeed, while the BOV is only concerned with the13

number of descriptors assigned to each codeword, the FisherVector (FV) [10, 11]14

as well as the related Vector of Locally Aggregated Descriptors (VLAD) [12]15
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and Super-Vector Coding (SVC) [13] also model the distribution of descriptors16

assigned to each codeword.17

Obviously discarding all information about the location ofpatches incurs a18

loss of information. The dominant approach to include spatial information in the19

BOF framework is the Spatial Pyramid (SP). Inspired by the pyramid match kernel20

of Grauman and Darrell [14], Lazebniket al. proposed to partition an image into21

a set of regions in a coarse-to-fine manner [15]. Each region is described indepen-22

dently and the region-level histograms are then concatenated into an image-level23

histogram. The SP enables to account for the fact that different regions can contain24

different visual information.25

Several extensions of the SP have been proposed. Marszaleket al. suggested a26

different partitioning strategy [16]. Their system combined the full image with a27

1x3 (top, middle and bottom) and a 2x2 (four quadrants) partitioning. Viitaniemi28

and Laaksonen proposed to assign patches to multiple regions in a soft manner29

[17]. The SP has also been extended beyond the BOV, for instance to the FV [11]30

or the SVC [13]. We note that all previous methods rely on a pre-defined parti-31

tioning of the image which is independent of its content. Uijlings et al. proposed32

a bi-partite image-dependent partioning in terms of object/non-object [18]. Two33

BOV histograms are computed per image: an object BOV and a context BOV.34

While the authors report a very significant increase of the classification accuracy35

on PASCAL VOC 2007, their method relies on the knowledge of theobject bound-36

ing boxes which is unrealistic for most scenarios of practical value. We outline37

that the simple SP of Lazebniket al. is still by far the most prevalent approach38

to account for spatial information in BOF-based methods. Recently, Krapacet al.39

[29] proposed to include a location prior per visual word andto derive a Fisher40
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kernel from this model. They report similar results as with SP but using a more41

compact representation. In [30], the authors propose to include spatial and an-42

gular information directly at descriptor level. They used soft-BOV and sparse43

coding-based signatures, reporting promising results compared to SP2.44

Our goal is to propose alternatives to the SP for object classification. We focus45

on the FV which is simple to implement, computationally efficient and which was46

shown to yield excellent results in a recent evaluation [31]. However, our work47

could be extended to other BOF-based techniques in a straightforward manner.48

We build on the insights of Boureau et al. [8, 9]. If we have a two-class49

classification problem, linear classification requires thedistributions of FVs for50

these two classes to be well-separated. However, there are two sources of variance51

which make the distributions of FVs overlap. The first one is due to the fact that52

the FV is computed from a finite set of descriptors. The secondone comes from53

the fact that the proportion of object-dependent information may vary between54

two images of the same class. Reducing these sources of variance would increase55

the linear separability and therefore the classification accuracy. In this paper, we56

propose two different and complementary ways to include thespatial information57

into the image signature which target these two sources of variance.58

The remainder of the article is organized as follows. In the next section, we59

briefly review the FV coding method. In section 3 we consider the variance due60

to the finite sampling of descriptors. We extend the analysisof [8, 9] to the case61

of correlated samples. We show that, because the SP reduces the size of the re-62

2Some of our contributions are related to those of [29, 30], which have been developed in

parallel to the work in this paper. As it will be clear in sec 5 our results in the VOC2007 dataset

outperform theirs by a large margin.

4



gion over which statistics are averaged, it impacts negatively the variance of the63

distribution of FVs. We therefore propose a novel approach to include the spa-64

tial information by augmenting the descriptors with their location. In section 465

we analyze the second source of variance specifically in the case of the FV. We66

show that we could partially compensate for this source of variance if we had67

access to the object bounding boxes. However, as opposed to [18] we propose68

a practical solution to this problem based on the objectnessmeasure of Alexeet69

al. [19]. In section 5, we provide experimental results on PASCAL VOC 2007,70

2008 and 2009 showing the validity and the complementarity of the two proposed71

techniques. A major benefit is that, as opposed to the SP, theydo not increase the72

feature dimensionality thus making the classifier learningmore efficient.73

2. The Fisher Vector74

We only provide a brief introduction to the FV coding method.More details

can be found in [10, 11]. LetX = {xt, t = 1 . . . T} be the set ofT local descrip-

tors extracted from an image. Letuλ : RD → R+ be a probability density function

with parametersλ which models the generation process of the local descriptors for

any image. The Fisher vectorGX
λ is defined as:

GX
λ = LλG

X
λ . (1)

Lλ is the Cholesky decomposition of the inverse of the Fisher information matrix

Fλ of uλ, i.e. F−1
λ = L′

λLλ. GX
λ denotes the gradient of the log-likelihood w.r.t.

λ, i.e.:

GX
λ =

1

T

T
∑

t=1

∇λ log uλ(xt). (2)
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In our caseuλ =
∑N

i=1 wiui is a GMM with diagonal covariance matrices and75

parametersλ = {wi, µi, σi, i = 1 . . . N} wherewi, µi andσi are respectively76

the mixture weight, mean vector and standard deviation vector of Gaussianui.77

Let γt(i) be the soft assignment of descriptorxt to Gaussianui. Following [10,78

11] we discard the partial derivatives with respect to the mixture weights as they79

carry little discriminative information. We obtain the following formulas for the80

gradients with respect toµi andσi:381

GX
µi

=
1

T
√
wi

T
∑

t=1

γt(i)

(

xt − µi

σi

)

, (3)

GX
σi

=
1

T
√
2wi

T
∑

t=1

γt(i)

[

(xt − µi)
2

σ2
i

− 1

]

. (4)

The image signature is defined as the concatenation of the vectors (3) and (4) for

all Gaussians:

GX
λ =

[

GX
µ1
, · · · ,GX

µN
,GX

σ1
, · · · ,GX

σN

]T
. (5)

As shown in [11], square-rooting and L2-normalizing the FV can greatly enhance82

the classification accuracy. Also, following the SP framework, one can split an83

image into several regions, compute one FV per region and concatenate the per-84

region FVs.85

Let D be the dimensionality of the local descriptors,N be the number of86

Gaussians andR be the number of image regions. The resulting vector isE =87

2DNR dimensional.88

3Vector divisions should be understood as term-by-term operations.
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3. Average Pooling and Feature Augmentation89

The FV, as given by eq (1) and (2), can be viewed as an average ofpatch-level

statistics. Indeed, we can rewrite:

GX
λ =

1

T

T
∑

t=1

zt (6)

with:

zt ≡ g(xt) ≡ Lλ∇λ log uλ(xt). (7)

If we assume the samplesxt to have been generated by a class-conditional dis-

tribution pc (where the variablec indexes the class) and to be iid, then (6) can be

seen as the sample estimate of a class-conditional expectation:

lim
T→∞

GX
λ = Ex∼pc [g(x)]. (8)

As noted in [8], there is an intrinsic variance in this estimation process which is90

caused by sampling from a finite pool of descriptors. Boureauet al. make a patch91

independence assumption and thus, in their analysis, the variance of this estimator92

decreases like1
T

.93

In the rest of the section we extend this variance analysis byrelaxing the in-94

dependence assumption. Although our focus is on FVs, the analysis we present95

applies to the broader class of image descriptors which average statistics computed96

from local descriptors. We also outline the shortcomings ofthe SP framework in97

the light of the previous analysis. Our conclusion is that partitioning the image98

into a set of regions increases the variance of the estimator. We finally present a99

new image representation which encodes the spatial layout while alleviating the100

partitioning.101
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3.1. Variance analysis of average pooling102

In what follows we assume that image patches are extracted from the nodes of

a regular grid4 and described byD-dimensional vectors,e.g. SIFT [1] descriptors.

To facilitate the analysis, let us consider a simplified model where all variableszt

have equal variancesi.e.Var(zt) = σ2. The variance of the sample mean estimator

is, in this case:

Var

(

1

T

T
∑

t=1

zt

)

=
σ2

T
+

σ2

T 2

T
∑

t=1

T
∑

s=1
s 6=t

ρ(zt, zs) (9)

with ρ(zt, zs) the correlation coefficient between variableszt andzs. If we define

the average of these cross-term correlations asρ̄ = 1
T (T−1)

∑T

t=1

∑T

s=1,s 6=t ρ(zt, zs),

eq. (9) can be rewritten as

Var

(

1

T

T
∑

t=1

zt

)

=
σ2

T
+ σ2T − 1

T
ρ̄. (10)

Note that the valuēρ is a function of several factors including the sampling stepor103

the size of the pooling window. We now analyze the impact of these two factors5.104

Figure 1 shows estimates of the average cross-term correlation ρ̄ as a function of105

the grid sampling step for two pooling window sizes:128×128 and96×96 pixels106

respectively (see sec. 5.2 for details about the feature extraction procedure). As107

expected,̄ρ increases when the sampling step or the window size decrease.108

We now study the implications on the SP framework. Based on theprevious109

analysis, we can see that partitioning the image incurs an increase in the variance110

4Other sampling strategies can be analyzed as well,e.g., random sampling or sampling based

on interest point/region detection. The conclusions that follow remain the same.
5We note that̄ρ might depend on many other factors including the semantic content of the

image.
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Figure 1: Average correlation̄ρ as a function of the sampling step for pooling windows of 128x128

and 96x96 pixels. This analysis was performed on thetrain set of the PASCAL VOC 2007 dataset.

of the estimator when compared to the case where the patch-level statistics are111

pooled over the whole image. Indeed,for a fixed sampling step, when the size of112

the pooling region decreases, we have the two following effects: i) the number of113

patchesT decreases and ii) the average correlationρ̄ increases.114

We would like to point out that using as many patches as possible (e.g. by

sampling patches at each pixel location) might not be optimal for the average

pooling strategy contrary to what is claimed in [9]. Indeed,on one hand decreas-

ing the step size will increase the sample cardinality, as desired. On the other

hand, increasingT will also increase the patch overlap and thereby the average

correlation. From (10) in the limit:

lim
T→∞

Var

(

1

T

T
∑

t=1

zt

)

= σ2ρ̄. (11)
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Therefore, the benefits brought by a greater sample cardinality might be compen-115

sated by an increase ofρ̄.116

3.2. Feature augmentation117

We now propose to model the layout of an image without partitioning it. We118

consider the joint distribution of low-level descriptorsandpatch locations. As we119

will see, our approach results in a very simple solution thatcompetes favorably in120

performance with SPs.121

Let mt = [mx,t,my,t]
T denote the 2D-coordinates of an image patch associ-

ated to a low-level descriptorxt andσt the patch scale. LetH andW represent the

image height and width respectively. We define the followingaugmented feature

vectorx̂t ∈ R
D+3:

x̂t =

















xt

mx,t/W − 0.5

my,t/H − 0.5

log σt − log
√
WH

















. (12)

By using (12) instead of the raw descriptors, the underlying distributionuλ now122

reflects not only the generation process of local descriptors but also the location123

and scale at which they are likely to be generated.124

This augmented representation offers several benefits withrespect to the SP.125

First, it does not rely on a partitioning of the image and therefore does not lead to126

an increase of the variance. Second, it leads to only a very small increase in the127

dimensionality of the FV:2N(D+3) dimensions compared to2DNR dimensions128

for a SP withR regions6. This makes the learning of classifiers significantly more129

6Actually in our experiments with augmented features we keepthe feature dimensionality con-
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efficient and helps scaling to larger datasets. Third, it does not require to choose,130

a priori, a given spatial layout. Indeed, the optimal layoutof a SP may depend on131

the dataset.132

Note that, as we consider diagonal covariances for the generative model of133

eq. (2), the components of the mixture (single Gaussians) can be decomposed as134

ui = u
(app)
i u

(loc)
i . Here,u(app)

i andu(loc)
i denote the appearance and location/scale135

part of the augmented representation, respectively. This is equivalent to explicitly136

including a (Gaussian) location prior per visual word, as proposed by Krapacet137

al. (c.f. eq. (18) of [29]). In our case, the model remains the same andwe only138

change the low level feature representation, making it possible to extend the model139

to other encoding methods.140

4. Within-Class Variance and Objectness141

In the previous section, we showed that the FV can be understood as the sam-142

ple estimate of a class-conditional expectation and that there is an intrinsic vari-143

ance in this estimation process which is caused by sampling from a finite pool144

of descriptors. We now show that there is a second source of variance which is145

inherent to the model and we propose another approach to takeinto account the146

spatial layout to remediate this issue.147

4.1. Within-class variance148

We follow the same line of thought as Boureauet al. [8] and Perronninet al.

[11] and assume that the local descriptors in a given image ofclassc are gen-

erated by a mixture of two distributions: a class-dependentdistributionqc and a

stant by selecting a subset of(D − 3) original features (c.f. sec. 5.1).
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background class-independent distribution. Furthermore, as is the case in [11], we

make the assumption that the class-independent distribution can be approximated

by uλ. Therefore, the generative model of patches in an image of classc can be

written as:

pc(x) = ωqc(x) + (1− ω)uλ(x) (13)

with 0 ≤ ω ≤ 1 reflecting the proportion of class-specific information. Asshown

in [11], if the parameters characterizing the background distributionuλ were esti-

mated to maximize (at least locally) the likelihood function, then we have approx-

imately:

lim
T→∞

GX
λ = ω∇λEx∼qc [log uλ(x)] (14)

and consequently we can rewrite (8) as follows:

lim
T→∞

GX
λ = ωEx∼qc [g(x)]. (15)

Following [8], we further assume thatω is drawn form a distribution (e.g. a

beta distribution) and that, while it may vary from one imageto another, it is

sampled only once per image. We underline that the distribution from whichω

is sampled might be class-dependent (c.f. Figure 2). In sucha case, the quantity

ωEx∼qc [g(x)] is a random variable. Therefore, even if we had access to an infinite

number of iid patchesT in each image (perfect estimation of the class-conditional

expectation) there would be some variancebetween imagesas we have:

Var
(

lim
T→∞

GX
λ

)

= Var(ω) (Ex∼qc [g(x)])
2 (16)

where the variance has been taken with respect toω. Therefore, we can decrease149

the variance, and therefore increase the class separability, by cancelling the effect150

of ω. We propose an approximate method to do so in the next subsection.151
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Figure 2: We show the histogram of theω values for two VOC 2007 classes: horse (left) and

potted-plant (right). Since we do not have access to omega directly, we use as a proxy the ratio

between the object bounding-box area and the image area.

4.2. Leveraging the objectness measure152

Let us use as a proxy forω the proportion of the image which is covered by153

a given object. We note that if we worked only with images of cropped objects154

then we would haveω ≈ 1 and the variance effect described in the previous sec-155

tion would be canceled out. Uijlingset al. indeed showed that the recognition156

accuracy of a BOV-based image classifier could be greatly increased by assuming157

the knowledge of the object locations in images [18]. However, in their scenario,158

the object bounding boxes were provided manually which is unrealistic for most159

applications of practical value7. The above has also been observed by De Cam-160

poset al. [20], who explored the use of human feedback to provide the approx-161

7We note that the SP could somewhat compensate for this sourceof variance for a given class

if the location of the considered object was fixed and matcheda given region of the SP. However,

such stringent conditions would rarely hold in practice.
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imate location of objects in images (given in terms of “soft”bounding boxes).162

The authors showed significant improvements compared to other alternatives,e.g.163

methods based on the “saliency” of local image patches.164

Recently, Alexeet al. [19] proposed a method to measure how likely an image

window is to contain an object of any class. The method relieson the combina-

tion of different cues designed to reflect generic properties of objects,i.e. global

saliency, local contrast and boundary closeness. This measure, used as a prior over

object locations was successfully employed to speed-up object detectors [19]. We

propose to use this objectness measure to approximately estimate the location of

objects in images. More precisely, we combine the objectness measure of [19]

with the locally-weighted patchesapproach of De Camposet al. [20]. In the

weighted-patches representation, we have a weightφt associated with each de-

scriptorxt and we have the following weighted representation of the image:

G̃X
λ =

∑T

t=1 φtzt
∑T

t=1 φt

. (17)

In our case, the weightsφt are computed as follows. For a given image, we draw

a set of windows from the objectness distribution with the sampling procedure

described in [19]. LetΩj , j = 1, . . . ,M represent the spatial support of thej-th

window (defined bye.g. its top-left and bottom-right corners). The weightφt for

the descriptorxt located at positionmt is computed as follows:

φt =
M
∑

j=1

δj(mt) (18)

whereδj(mt) has been defined as:

δj(mt) =











1 if mt ∈ Ωl,

0 otherwise.
(19)
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Figure 3: Sample images from the PASCAL VOC 2007 dataset and the corresponding objectness

maps obtained by sampling 1000 random windows.

Figure 3 shows the objectness maps obtained by this procedure for some example165

images of the PACAL VOC 2007 dataset [21]. Note that, obviously, even if the166

objectness measure of [19] provided a perfect prediction ofthe presence/absence167

of an object, the proposed approach would only partially cancel the effect ofω for168

several reasons. First, some object patches might have beenemitted by the back-169

ground distribution,e.g. the uniform patches of an untextured object. Second,170

some background patches might have been emitted by the class-specific distribu-171

tion, e.g. when the background strongly correlates with the presenceof the object.172

Third, realistic images contain multiple objects and the objectness measure does173

not distinguish between different objects. Therefore, multiple objects might con-174

tribute to the weighted image signature.175

We note that Perronninet al. [11] proposed the L2 normalization of the FV to176

cancel the effect ofω. In our experiments, we always found that the combination177

of the L2 normalization and the objectness measure improvedclassification which178

seems to indicate that there is a complementarity between these two approaches.179

We also note that Uijlingset al. partitioned the image into object/background180
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and consequently computed two representations per image: one for the object181

and one for the background. The two representations were subsequently com-182

bined. We also tried to compute two FVs: one using the objectness measure and183

one using the complement to focus on context information. Weobserved exper-184

imentally that adding the context information had little impact in our case. This185

might be because the FV weighted by the objectness measure already contains a186

fair amount of background information (c.f. Figure 3). Therefore, we discarded187

the context FV. Consequently, using the objectness measure does not increase the188

dimensionality of the FV representation.189

We note that using the objectness measure to compute patch weights can be190

regarded as a saliency estimation process. However, traditional approaches for191

saliency detection (i.e. bottom-up methods) rely on scoring small regions ac-192

cording to their rarity w.r.t. to their local surroundings.As such, salient regions193

detectors show difficulties in dealing with cluttered or textured backgrounds (as194

observed, e.g. in [28]). Although the method of Alexeet al. includes a multi-195

scale saliency detector as a basic cue, it also considers other measures related to196

the presence of whole objects besides of simple local characteristics.197

It has been observed that highlighting whole objects may notalways be best198

strategy. For instance, if the goal is to distinguish between cats and dogs, it is199

better to highlight their heads than give equal importance to their whole body200

[20, 32]. In that context, it is possible that novel top-downsaliency estimators may201

lead to better performance with the proposed representation. Such an evaluation202

is a suggestion for future work.203

Finally we point out that, in the case of the BOV representation, the max-204

pooling strategy was shown to be more resilient to the variance of ω than the205
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average pooling strategy. However, extending the max-pooling strategy to the FV206

– i.e. beyond count statistics – is non-obvious in our opinion andwould be an207

interesting topic of future research.208

5. Experiments209

We first present the experimental setup. We then provide moredetails about210

the computation of the average correlation in sec 3. We finally report our results.211

5.1. Experimental setup212

Datasets.We ran experiments on three challenging datasets: PASCAL VOC213

2007 [21], 2008 [22] and 2009 [23]. These datasets contain images of 20 ob-214

ject categories:aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,215

diningtable, dog, horse, motorbike, person, pottedplant,sheep, sofa, trainandtv-216

monitor. The set of images for each class exhibits a large degree of intra-class217

variation, including changes in viewpoint, illumination,scale, partial occlusions,218

etc.. Images from these datasets are split into three groups: train for training,val219

for validation andtest for testing. We followed the recommended procedure of220

selecting parameters by training on thetrain while using theval set for testing.221

The system was re-trained using thetrain+val sets once the best choice for the222

parameters have been selected. Classification performance is measured using the223

mean Average Precision (mAP).224

Low-level features. In all our experiments we usedonly 128-dimensional225

SIFT descriptors, computed over image patches of32 × 32 pixels uniformly dis-226

tributed over the image,i.e. extracted from the nodes of a regular grid with a step227

size of 8 pixels (we used the “flat” implementation of [24]). We did not perform228

any normalization on the image patches before computing SIFT descriptors. The229
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dimensionality of these descriptors were further reduced to 80 by Principal Com-230

ponents Analysis (PCA). To account for variations in scale, we extracted patches231

at 7 levels with a scale factor of
√
2 between them. Images were first upsampled232

at twice their original resolution as in [1].233

Feature augmentation.For the experiments based on the feature augmenta-234

tion approach (sec. 3.2) we kept the same dimensionality of low level features by235

replacing the 3 “least-significant” dimensions of the PCA-reduced SIFT with the236

3 location and scale dimensions. This ensures a fair comparison with the original237

80-dimensional PCA features.238

Objectness measure.To compute the objectness measure, we used the default239

pre-trained system provided by the authors of [19]. We sampled 1,000 windows240

per image.241

Generative model.We trained a GMM with the Maximum Likelihood (ML)242

criterion using the Expectation-Maximization (EM) algorithm. We used 1M ran-243

dom samples from the training set and the EM algorithm initialized by running244

standard k-means and using the statistics of points assigned to each Voronoi parti-245

tion (relative count, mean and variance vectors) as initialestimates for the mixing246

coefficients, mean and variance vector respectively.247

Classifiers.We learnt a linear Support Vector Machine (SVM) independently248

for each class (one-vs-all classification) using Stochastic Gradient Descent (SGD)249

in the primal. We used the code made available by Bottou [25].250

5.2. Estimation of the sample correlation̄ρ251

We now give a detailed explanation of the estimation procedure outlined in252

section 3. We generated a set of 100 fixed-size images by randomly sampling253

windows (of128× 128 and96× 96 pixels respectively) from thetrain set of the254
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Figure 4: Classification performance vs number of Gaussians(top) and vs the image signature

dimensionality (bottom) on VOC 2007.

PASCAL VOC 2007 dataset. For each such window we extracted SIFT descrip-255

tors as described above but considering only one level and noup-sampling was256

performed. We computed a “single-feature” FV for each extracted sample by us-257

ing a model with 128 Gaussians. We did not perform any furthernormalization,258

neitherL2 nor square rooting. We repeated the experiment 5 times with adifferent259

subset on each run. In Figure 1, we show the mean over all runs and error bars at260

1 standard deviation.261

5.3. Results262

VOC 2007. Figure 4 (top) shows the classification performance as a func-263

tion of the number of Gaussians (from 128 to 2,048) on the PASCAL VOC 2007264

dataset. We consider two baseline systems: one which does not include any kind265

of spatial information (FV) and one based on a FV with a 1x1+2x2+1x3 partition-266

ing (SP). Note that the signatures of the SP system are 8 timeslarger than those267

of the FV for the same number of Gaussians. Compared to the state-of-the-art,268
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our SP system achieves a performance comparable to the best published results269

for systems using only SIFT descriptors (63.8% vs 64.0% of Zhouet al. [13]).270

We also evaluate the following systems: a FV system based on feature aug-271

mentation (AUG), a FV system employing the objectness prioron top of non-272

augmented PCA-reduced vectors (OBJ) and a FV system based on the combina-273

tion of both of the above (A+O),i.e. by using the objectness measure to weight the274

contribution of augmented low-level features. We also evaluate a system based on275

a late-fusion approach (LF): averaging the outputs of the classifiers from the A+O276

and SP systems.277

Let us first compare our two baseline systems: FV and SP. It canbe seen278

that, besides the notorious benefit of including the spatialinformation into the279

representation, these two systems behave differently as the size of the vocabulary280

increases. In the case of FV, it reaches a plateau at 1024 Gaussians while SP does281

reach a maximum at 512. We can explain this behavior by notingthat the variance282

of the FV depends not only on the number of patches but also on the number Gaus-283

sians, since the larger the number of Gaussians the fewer “per Gaussian” statistics284

are pooled together (higher sparsity). This also applies toother image-level repre-285

sentations and especially to the BOV as noted in [8, 9]. Therefore,by partitioning286

the image we are not only reducing the number of samples contributing to the287

representation but also limiting the capacity of the systemto benefit from richer288

vocabularies.289

Let us now consider the performance of the proposed systems (AUG and OBJ)290

alone. In both cases, we observe a consistent improvement w.r.t. the FV-baseline291

for all vocabulary sizes. Compared to SP, the OBJ system shows aslightly worse292

performance for models having up to 512 visual words. It reaches its maximum293
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accuracy of 64.7% mAP at N=1,024 and outperforms our best SP system while294

using 4 times smaller signatures. We observe a similar behavior on the AUG295

system. It shows a lower performance for small vocabulariesbut the gain brought296

by using a more complex model becomes even more pronounced. It reaches a297

value of 64.8% mAP at 2,048 Gaussians and, contrary to the SP and OBJ systems,298

it does no show a decrease in classification performance withlarger vocabularies.299

If we now consider the combination of the two,i.e. our A+O system, we ob-300

serve some complementarity between these two approaches: while the augmenta-301

tion approach models the location information in animage-independentmanner,302

the objectness prioradapts to the image content.The combined system achieves303

65.8% mAP. This is +2.0% better than our SP baseline.304

Finally, let us consider the system obtained by averaging the outputs of the305

SP and A+O classifiers. Note the great complementarity that exists between the306

system for small vocabularies. The combined system achieves a state-of-the-art307

accuracy of 64.4% mAP with barelyN = 128 Gaussians. For larger values ofN308

the effect becomes less noticeable: +2.4% absolute points (+3.8% relative) at 128309

Gaussians vs. +0.6% (+0.9%) at 1,024 Gaussians.310

We also show in Figure 4 (bottom) the classification accuracyas a function of311

the dimensionality of the image signatures. When compared tothe SP baseline or312

to [13] the advantages of our representation are clear: we can achieve the same313

accuracy with much smaller dimensional image representations. Again, this is an314

important advantage when scaling to large datasets.315

Table 1 shows the classification accuracy obtained for the best of each system316

in figure 4. We also compare with the supper vector coding (SVC)approach of317

Zhouet al. [13].318
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Table 1: Classification performance for each class of the PASCAL VOC 2007 dataset for the

systems shown in figure 4.

Class [13] FV SP AUG OBJ A+O LF

aeroplane 79.4 80.2 81.7 81.6 82.9 83.1 83.8

bicycle 72.5 69.1 69.5 71.0 69.8 71.0 72.0

bird 55.6 52.8 55.9 58.0 57.4 61.0 59.7

boat 73.8 72.9 73.0 74.6 72.4 73.4 74.6

bottle 34.0 37.6 34.9 37.2 38.6 38.5 37.8

bus 72.4 69.5 71.7 71.3 69.8 70.7 72.9

car 83.4 81.8 81.7 82.1 82.2 83.2 82.9

cat 63.6 61.8 63.4 65.0 66.2 68.1 67.7

chair 56.6 54.9 57.0 58.2 53.9 57.2 57.8

cow 52.8 47.2 50.4 50.7 52.1 54.4 55.1

diningtable 63.2 61.5 63.8 64.9 62.4 64.5 66.7

dog 49.5 50.5 49.5 52.7 56.3 57.9 54.9

horse 80.9 79.1 80.3 80.8 79.8 80.7 81.6

motorbike 71.9 67.1 68.8 68.1 69.3 70.7 71.2

person 85.1 85.8 86.0 86.7 86.4 86.6 87.0

pottedplant 36.4 37.6 37.7 38.3 37.7 37.5 37.6

sheep 46.5 46.6 49.7 50.9 56.8 53.6 53.5

sofa 59.8 57.0 59.1 59.5 60.7 60.8 63.0

train 83.3 82.3 82.6 83.9 81.8 82.7 84.0

tvmonitor 58.9 59.0 58.7 60.0 59.5 59.7 60.7

average 64.0 62.7 63.8 64.8 64.5 65.8 66.3
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VOC 2008 and VOC 2009.Next, we evaluate the performance of our system319

on both PASCAL VOC 2008 and PASCAL VOC 2009. We compare the per-320

formance of our A+O approach against the winning teams of these challenges:321

the “SurreyUVASKRDA” system on VOC 2008 [26] and the “NECUIUCCLS-322

DTCT” system on VOC 2009 [27]. The first one is based on the combination323

of several types of detector/descriptor channels, the use of SPs and costly non-324

linear classifiers. The second one combines several encoding techniques with325

class-specific object detectors. We believe these two methods to be significantly326

more computationally intensive than ours. We also show results obtained with327

our baseline SP system for further comparisons. In the case of VOC 2009 results,328

we also include those obtained by Zhouet al. [13] with SVC. Table 2 shows the329

performance for each of the above systems. As a complementary note, table 3330

compares the average performance of the LF system with the best results of table331

2, showing that on these datasets the late fusion of SP and A+Oclassifiers brings332

little improvement (+0.4% absolute).333

6. Conclusions334

We addressed the problem of representing the spatial layoutof images with335

two different and complementary approaches. Both originated from a theoretical336

well founded analysis. We showed on three of the challengingPASCAL VOC337

benchmarks the benefits of our approach: a higher accuracy without increasing the338

image signature dimensionality. Although our focus was on FVs, the generality339

of the approach makes it applicable to other BOF-based representations.340
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